
Migrating a Full-Text Search

By Andreas Rappold, Barbara Ondrisek, Siegfried Goeschl

Introduction

willhaben.at is a classified ads provider in Austria - according to [1] it is one of the

busiest web sites in Austria - the infrastructure manages 1.8 million classified ads,

serves 12.9 million page impressions every day, imports 20 new classified ads every

minute and runs, on the average, 25 full-text search requests each and every

second. willhaben.at was happily using Microsoft FAST ESP (Enterprise Search

Platform) on Linux until Monday, February 8th, 2010 when the following headline

hit the press - "FAST to abandon Linux and Unix" [2]. Running FAST using

Microsoft Windows in production - the operations team was not excited. In

addition, FAST ESP servers started to slow down and FAST expertise was scarce in

general. In the beginning of 2012 product management looked into alternatives and

settled for Apache SOLR - an open-source search server based on Lucene and

developed by the Apache Software Foundation.

The Impact of Replacing FAST ESP
The first question during the project kick-off meeting - "How big is the impact of

replacing FAST with SOLR?" Encouraging answer from software development:

"Massive." The term "full-text search" is somehow misleading since many user-

driven searches are centred on hierarchical navigation. The term "hierarchical

search" would be a better description for navigating classified ads, e.g. starting from

"Audio/TV/Phone" to "DSLR" and "Nikon", searching for "D7000" within the price

range from 750-900 EUR to be found in Vienna preferably in the 8th or 9th district.

In fact the whole classified ads navigation including the site's landing page depends

1

on full-text search. So bringing down the entire site looks uncomfortably possible

and provides you with the five minutes of fame you are not looking for.

Risks, Requirements and Implementation
If risk can't be avoided it needs to be managed - the following requirements were

defined:

• The SOLR search shall provide at least the same or a better search experience

• The SOLR deployment shall handle more load than existing FAST servers

• Avoid Big Bang Integration and support a stepwise migration instead

• Provide an emergency fallback mechanism from SOLR to FAST

• Implement state-of-the-art server monitoring to detect problems early on

Let's have a closer look at the requirements and how to fulfill them.

Improve Search Experience

The minimum requirement for SOLR was to provide the same or better search

experience compared to Microsoft FAST. One important improvement for full-text

search was better support of German compound words - that feature was internally

called implicit wild-card search. Let's look at an example - the German word

"Leinenhose" is a compound word consisting of "linen" and "trousers" and shall be

found when searching for "hose" or "leinen" - a plain-vanilla search would miss

"leinenhose" when searching for "hose" because these are two completely different

tokens as far as full-text search is concerned. Technically there are various

approaches such as prefix/postfix wild-card search, N-Grams or a dictionary-based

word-splitting algorithm. Project management settled for a modified SOLR

DictionaryCompoundWordTokenFilter providing a good balance between search

speed, index size and matching capabilities as shown below:

2

Figure 1: German Compound Words

Performance Requirements

Due to the commercial success and increased traffic the SOLR server deployment

needs to handle a significantly higher load than the original FAST installation.

During peak hours in spring 2012 the performance requirements exceeded 200 full-

text search requests per second - it was assumed that the SOLR deployment needs

to handle 300 search requests / second at peak hours.

Avoiding Big-Bang Integration

Avoiding big-bang integration and emergency fall-back becomes second nature

when working with 24x7 server applications - even more so when your annual

bonus depends on system downtime (aka feedback loop in management terms). The

classified ads are divided into three so-called verticals.

• Bits And Pieces (BAP, used goods)

• Estate

• Motor

3

SOLR to FAST Fall-back

Looking at those verticals, it was decided to migrate one vertical at a time while

using a Minimally Invasive Integration Pattern. A custom query parser was written

to translate a FAST query language (FQL) query into a corresponding SOLR query

on the fly. Consequently, the emergency fall-back from SOLR to FAST was

straightforward to implement - instead of translating a FQL statement into a

corresponding SOLR query and hitting the SOLR server, the FQL query was simply

processed by the FAST ESP server.

Server Monitoring

Quite a few production and performance problems do not arise out of the blue but

could be caught early on, assuming that comprehensive server monitoring is

straight-forward to use and available for everyone. The worst case is a flood of

customer complaints and high-level management showing up at your desk while

you are the very last one finding out about the problem. Consequently, keeping an

eye on server monitoring tools is encouraged and possible from within the whole

company starting from the browser to dedicated TV screens hooked up to

Raspberry PIs located in the offices and even in the kitchen. Considering the

corporate culture, it is encouraged to setup server-monitoring tools before running

the first performance test.

The Testing Approach

At this point we have a project, risks, and requirements - time to think about quality

assurance and testing. At the company willhaben.at agile rules - QA, DEV & OPs

are co-located in the same room and work closely together. Hence the following QA

approach was chosen:

4

Activity Team

Unit tests Dev

Functional tests QA

Performance tests Dev & Ops

Integration tests Dev & QA

Acceptance tests QA & PM

Pre-production tests Dev & Ops

Working together tightly has additional advantages such as a better understanding

of each other’s work and its challenges. For that reason the topic of testability came

up early in the development cycle because testability was considered as a critical

success factor in delivering 24x7 server-side software.

Striving for Testability

Testability is in many ways a crosscutting concern and comes in many flavours

ranging from repeatable system setup to custom monitoring components.

In our case we settled for the following action items to improve testability

• Use well-known production test data for regression testing

• Provide a simple SOLR-based GUI to cater for prototype testing

• Determine the most frequent search terms

When tweaking the SOLR server configuration it becomes obvious that there are

many configuration options and equally many ways of causing undesired side

effects and errors. Therefore it is mandatory to implement a comprehensive set of

full-text searches based on well-known test data. The well-known tests data

consisted of 10,000 production adverts per vertical ("Motor", "Estate" & "Bits and

Pieces"). When using the Maven build tool, it only takes three command line

invocations from a clean SVN checkout to an up & running local SOLR server

instance with 30,000 ingested documents.

5

trunk> mvn clean install

trunk/solr-server> mvn clean jetty:run

trunk/sol-server/src/test/bin> ./import-all.sh

With a SOLR server and test data at your fingertips it would be very convenient to

run full-text search queries and view the results in a web browser. The out-of-the-

box SOLR Admin GUI is not user friendly so the VelocityResponseWriter [3] was

used which in turn utilizes Apache Velocity for rendering a HTML page with search

results. After a little bit of tinkering with Velocity templates and the Maven build,

the GUI is automatically deployed with the SOLR server. In other words - when

executing the three command line invocations above, the GUI is ready to use.

Figure 2 : Solritas GUI

6

Functional tests were defined according to Risk-based Testing [4] and the test team

asked - "What are the most frequent search terms in production so we can focus on

them?!” The intention was clear; only answering proved difficult. The list of most

frequent search terms was to be extracted from the FAST server's query log that in

turn required some sophisticated scripting. Looking at the question in more detail it

becomes obvious that the most frequent search terms change over time, e.g.

"windsurfing equipment" is not hugely popular during winter in Austria. Also the

on-line advertising department showed great interest in the list of most frequent

search terms which brings back testability as a cross-cutting concern - during the

course of the project a custom SOLR component was implemented to retrieve and

display the most frequent search terms in real-time over the browser as shown

below

Figure 3: Most Frequent Search Terms

7

Unit Tests

For unit testing the usual suspects were used such as

• JUnit as regression test framework

• Jenkins as CI server

• Sonar for static code analysis

For the implementation a mostly test driven approach was used - writing unit tests

along the actual Java code, while the Sonar reports were used as a quality feedback

loop.

Figure 4: SOLR Sonar Report

8

Integration Tests

The approach of translating a FAST query to a corresponding SOLR query allows

executing the same query using both full-text search servers and comparing the

results - in other words a Gold Standard Oracle [5] approach can be used. Does a

full-text search return the same search result when processed by FAST versus

SOLR? The answer is somewhere between "no" and "it depends". Let's have a closer

look at comparing the results of two full-text search engines. Full-text search

engines differ in their implementation, configuration, and technical capabilities

such as:

• Tokenizer

• Stemmer

• Relevance algorithm

• Query boosting

• Stopword list

• Synonym list

Consequently, returned documents will differ to a certain degree depending on the

search request. This required a custom JUnit test harness to implement the

following features:

• Iterate through a CSV file containing FAST search queries and their confidence

thresholds

• Execute the query using FAST and SOLR server

• Intersect the document from both result sets

• Determine at which percentage SOLR documents are matched with FAST

documents

• If the percentage falls below the confidence threshold, the test has failed

9

Let's have a closer look at a line in the CSV file:

Field Description Example
testname ID to identify the search query Line-01

query FAST search query string and(finntechcomp:string("Guitar",
mode="AND", annotation_class="user"))

sortby Sort order -fnpublisheddate -fnhwboost

hits Number of requested documents 25

confidence The percentage of common
documents

85

SOLR Performance Testing

The performance tests were based on Apache JMeter - setting up a JMeter test

script is straightforward as SOLR exposes a REST interface. The SOLR search

requests being executed were derived from the FAST query log representing one

hour of peak load of the production system. In addition to the search requests being

executed, the JMeter script uploaded two new adverts per second, which were

indexed every minute. Adding documents to the SOLR index causes the internal

caches to be invalidated resulting in a performance penalty - this penalty is partly

compensated by so-called cache pre-warming queries.

The result of the first performance test indicated a severe disk I/O bottleneck

limiting the throughput to 60 search requests per second. The SOLR index is spread

over multiple files totalling 5GB and the hard disks were not capable of delivering

the required throughput (mostly random file access). The I/O bottleneck was

actually expected and the SOLR index was moved to a ram-disk. Reading the SOLR

index file from the ram-disk resulted in a sustained throughput of 200 search

requests per second on a single SOLR server instance.

Judging the performance of a full-text search just by looking at the maximum

number of processed requests per second and average response time is not good

10

enough - we are also interested in maximum response times. Assuming that only

one out of 10,000 search requests takes more than three seconds, there are at least

200 customers every day, thinking that the site is slow today. The original approach

determining the distribution of response times, and long-running queries consisted

of parsing the FAST query log file. This approach worked but it was clumsy -

inspired by the MySQL Slow Query Log, a similar functionality was implemented

as SlowQueryLogRequestHandler. This custom SOLR component logs long-

running SOLR queries into a logfile and displays status information in the SOLR

Admin GUI as shown below:

Figure 5: Slow Query Log

Pre-Production Testing

BAP ("Bits and Pieces", used goods) was the first vertical to be migrated - a major

risk, considering that it constitutes 90% of the overall number of classified ads and

attracts most of the customers and their traffic. So why choose BAP? There was

11

pressure to offload FAST ESP quickly and the two other verticals would have hardly

made an impact. In order to minimize the risk the following approach was used:

• The document import was set up to ingest new adverts on both systems

simultaneously

• A junction sent the search requests to both full-text search servers

• The FAST search result was used, thereby discarding the SOLR result

This simple approach allowed us to run the SOLR server and document ingestion

and performance for one month under production conditions. As an additional QA

measure all willhaben.at employees were using one production server wired with

SOLR to get more feedback.

Afterwards we had sufficient confidence to switch the junction on the production

system, effectively turning SOLR into the primary and FAST into the fall-back

system.

The Achieved Quality Level

Taking about QA approaches is academic unless we look at the project's error rate

to judge their effectiveness.

Pre-Release versus Post-Release Bugs

Personally we make the following distinction regarding bugs:

• Good bugs are found by developers during on-going development and never

make it into the bug tracking

• Bad bugs are found by QA when the code is finished, causing entries in the bug-

tracking tool

12

• Really bad bugs slip past development and the QA team, causing highly visible

entries in the bug-tracking tool

So let's have a look at the bad and really bad bugs found during the rollout of the

three verticals

Vertical Pre-Release Bugs Post-Release Bugs

BAP 31 19

ETSTATE 13 3

MOTOR 12 1

SUM 56 23

As shown above we had a lot of post-release bugs found in BAP due to the following

reasons:

• BAP was the first vertical being migrated and a lot of lessons were learned

improving the quality

• BAP contains 1.6 million adverts with diverse content, which makes processing

much harder than the other verticals

Making mistakes teaches valuable lessons, which resulted in a significant lower

error rate for the other verticals as shown below:

13

Figure 6: SOLR Cumulative Bugs

Let's have a closer look at bugs slipping past development and the QA team

• Problems with brand names and WordDelimiterFilterFactory - tokenizing "B &

O", "B&O" and "Bang & Olufson" yielded completely different search results

while the customer expects all three variations to find exactly the same

classified ads

• Accidentally triggering wildcard search - Alfred Hitchcock's books about the

"Three Investigators" are known as "Die Drei ???" in German but unfortunately

"???" serves as a wildcard expression to match three arbitrary consecutive

characters which in turn returns 1.6 million results

• Support of German compound words and stemming caused interesting search

results and customer complaints, e.g. the city "Klosterneuburg" matches the

14

three German words "Kloster", "neu" & "Burg" but no customer would expect

"Klosterneuburg" to be returned when searching for "neu"

• When searching for motorbikes all of the following search terms are equivalent:

"300 ccm","300 cm3","300 cm^3" - initially SOLR had a different

understanding

• Poorly understood FAST features caused functional problems when using SOLR

• Document ingestion - the whole document ingestion process (i.e. adding new

classified adverts to the SOLR index) is complex and therefore fragile

• General integration problems when working on a large and sometimes alien

code base

Performance and Availability Level

More important than bugs were the performance and overall availability of the

SOLR server and its infrastructure - downtime is much worse than a few obviously

wrong and entertaining search results (remember the management feedback loop).

The good news is - the actual performance exceeded the requirements and no

downtime happened during nine months of production usage. Having said that the

performance and uptime can be mostly attributed to the SOLR server

implementation and was not affected by our work - cui honorem, honorem.

The following screenshot shows vital server parameters during seven months as

recorded by JavaMelody:

15

Figure 7: SOLR JavaMelody Report

It can be concluded that

• The SOLR server load never exceeded 62 per cent

• The SOLR server never exceeded 8 GB of memory

• A maximum of number of 23.000 requests were processed per minute

• The average response time for a search request is well below 30 milliseconds

At the first glance the monthly spikes regarding "%CPU" and "Http hits per minute"

are a bit puzzling - those spikes were caused by the repeated performance. Running

a performance test after each release is good practice to avoid performance

degradation caused by newly deployed features.

16

Conclusion

In our opinion quality assurance goes well beyond testing and requires a cross-

functional team. In a perfect world (and fortunately for this project) the team

consists of development, testing, operations and product management. In particular

the development team has an important role to support testing and operations since

many roadblocks can simply be avoided assuming that development team is aware

of them and has sufficient resources for the tasks at hand. The migration from FAST

to SOLR was a challenging project due to the fact that an existing and mostly well-

working system was replaced - replacing a broken system earns more positive

feedback. A lot of effort went into the SOLR migration in order to avoid functional

degradation, slow response times, production downtime and disgruntled

customers. As far as the authors can tell, the project was considered a success, with

very few customer complaints, plenty of opportunities to have fun and many lessons

to be learned.

References

• [1] http://www.oewa.at/index.php?id=2

• [2] http://blogs.msdn.com/b/enterprisesearch/archive/2010/02/04/innovation-

on-linux-and-unix.aspx

• [3] http://wiki.apache.org/solr/VelocityResponseWriter

• [4] Risk management in software quality assurance: Risk-Based Testing, Jan

Sickinger 2011

• [5] Robert V. Binder, Testing Object-Oriented Systems: Models, Patterns, and

Tools, Addison Wesely Longman, 1999

17

http://www.oewa.at/index.php?id=2
http://www.oewa.at/index.php?id=2
http://blogs.msdn.com/b/enterprisesearch/archive/2010/02/04/innovation-on-linux-and-unix.aspx
http://blogs.msdn.com/b/enterprisesearch/archive/2010/02/04/innovation-on-linux-and-unix.aspx
http://blogs.msdn.com/b/enterprisesearch/archive/2010/02/04/innovation-on-linux-and-unix.aspx
http://blogs.msdn.com/b/enterprisesearch/archive/2010/02/04/innovation-on-linux-and-unix.aspx
http://wiki.apache.org/solr/VelocityResponseWriter
http://wiki.apache.org/solr/VelocityResponseWriter

